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Abstract

A stochastic model for the dispersion and deposition of particles in a turbulent field is explored. The

trajectories of particles originating from a wall source in a horizontal channel are considered. The fluid

turbulence seen by the particles is modeled by a Langevin equation that is modified to account for spatial

nonhomogeneities. The results of these studies are used to describe a simplified version of an annular flow

in which particles, admitted to the field at the two walls, mix and deposit downstream. In these calculations

the walls are represented as arrays of point sources. The relative strengths of the sources at the two walls are
adjusted so as to realize a stationary state. The results are compared with calculations done in a direct

numerical simulation of the turbulence. Considering the simplicity of the model, the agreement is quite

good. The work described in this paper opens the possibility of carrying out studies of the diffusion and

deposition processes over a wide range of conditions. The development of a physical understanding of the

concentration distribution and of the rate of deposition is of particular interest.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Significant advances have been made in understanding the dispersion and deposition of solid
spheres by solving the equation of motion in a direct numerical simulation (DNS) or a large eddy
simulation (LES) of a turbulent field. Particle dispersion from a point source or from uniformly
*
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distributed point sources in a channel flow has been studied by Brooke et al. (1994) and Chen and
McLaughlin (1995) in a DNS and by Wang and Squires (1996) and Wang et al. (1997) in a LES of
turbulent flow in a channel. Calculations in a DNS require large amounts of computer time, so
they are restricted to small Reynolds numbers and to simple geometries. Such calculations are of
limited usefulness in exploring a large range of system variables. Large eddy simulations offer
some improvement but there are uncertainties in modeling the subgrid scale turbulence and fine
grids must be used in the viscous wall layer when considering processes such as particle deposi-
tion. This paper explores an alternate computational method in which a modified Langevin
equation is used to describe the fluid turbulence seen by the particles by testing the accuracy of the
stochastic model against experiments done in a DNS.

The system being considered is a turbulent flow in a horizontal channel for which particles are
admitted to the field by arrays of sources from both walls. Particles from a given instantaneous
source are dispersed by turbulence and gravity; they, eventually, deposit on a wall. The relative
rates of admitting the particles at the two walls are adjusted so that after a sufficient time a fully-
developed concentration field is reached for which there is no change of the number of particles in
the field. The basic problem, then, is the description of the behavior of an instantaneous source.

The contributions of this paper are as follows: (1) New results are presented for a wall source at
Res ¼ 150. (2) The accuracy of a stochastic model which uses the Langevin equation to define the
fluid turbulence is examined. (3) The representation of a disperse flow as resulting from a dis-
tribution of sources is illustrated for an idealized version of an annular flow. (4) The deposition
process that is examined differs from previous work (cited above) in that a stationary condition is
considered, for which the rate of introducing particles equals the rate of deposition. In a subse-
quent paper (Part 2), the stochastic model is used at a larger Res to examine the effects of the
inertial time constant and the settling velocity on dispersion and deposition.

A modified Langevin equation has been developed to calculate dispersion of fluid particles in
nonhomogeneous fields by Hall (1975), Reid (1979), Wilson et al. (1981), Legg and Raupach
(1982), Durbin (1983, 1984), Thomson (1984, 1986, 1987), van Dop et al. (1985) and Reynolds
(1997). Mito and Hanratty (2002) have exploited these advances to study fluid particle dispersion
in a channel flow. They used results for dispersion from sources at different locations in a DNS to
define the spatial variation of the Lagrangian time constant. Good agreement was obtained be-
tween experiments in a DNS and calculations with a modified Langevin equation that used a joint
Gaussian forcing function.

The use of the Langevin equation to describe fluid velocities seen by a dispersing solid sphere
has been explored by Perkins (1992) and by Pozorski and Minier (1998). Iliopoulos et al. (2003)
considered turbulent flow in a channel. They used this approach to calculate dispersion and de-
position of solid spheres originating from a source located at 40 wall units from the boundary and
from point sources which are uniformly distributed over the channel cross section. Good agree-
ment was noted between calculations done with a DNS and a Langevin model.

The motivation for the work described in the three parts of this paper is to study the relative
effects of gravity and turbulence in horizontal annular flow. Because of gravity, the drops dis-
tribute asymmetrically and the rate of deposition is greater at the bottom wall. Under fully-
developed conditions the rates of atomization and deposition are the same at each wall. In order
to carry out the calculation it is necessary to specify how the particles enter the turbulent field. We
have used the simple assumption that they are propelled from the wall with a constant velocity
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having normal components of V þ
2 ¼ 1 from the bottom and V þ

2 ¼ �1 from the top, where the plus
indicates that the velocity has been made dimensionless with the friction velocity.

The method of describing the concentration field as resulting from a distribution of wall sources
and sinks is the same as used by Hanratty (1956) and by Papavassiliou and Hanratty (1997) to
describe scalar transport. The important role of droplet mixing in the behavior of horizontal
annular flows is emphasized in works of Paras and Karaberas (1991), Pan and Hanratty (2002)
and Baik and Hanratty (2003).
2. Definition of the system

The simplified annular flow that is considered is depicted in Fig. 1. The flow is fully-developed.
The drops are represented by solid spheres. The Reynolds number, Res ¼ 150, is defined with the
friction velocity, v�, and the half-height of the channel. Particles are injected from the bottom wall
at a rate RAb with a velocity V þ

1 ¼ 15, V þ
2 ¼ 1, V þ

3 ¼ 0 and from the top wall at a rate RAt with a
velocity V þ

1 ¼ 15, V þ
2 ¼ �1 and V þ

3 ¼ 0. These velocities are representative of the turbulent ve-
locities outside the viscous wall layer. They were chosen because we presume that particles can be
entrained into the flow field only by strong turbulence events. Calculations show that the mag-
nitude of the streamwise component of the injection velocity affects the streamwise distribution of
particles emitted from a wall source. However, it has negligible effects on the distribution in the
wall normal direction and on the deposition constant. For the sþp considered in this paper, the
magnitude of the wall normal velocity of the injected particles has a negligible effect on the de-
position constant at very small dimensionless gravities. However, its influence increases with in-
creasing gravitational effects (This behavior is discussed in Part 2 of this paper). The particles are
treated as points that deposit when they are at a distance of dp=2 from the wall, where dp is the
diameter of the particles. The rates of deposition at the bottom and top walls are designated by
RDb and RDt, where
RAb ¼ RDb and RAt ¼ RDt ð1Þ
when a fully-developed condition is realized. The ratio RAt=RAb is calculated from the following
relation, given by Binder and Hanratty (1992):
Fig. 1. Gas–liquid horizontal annular flow.
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RAt

RAb

¼ Fbt
Ftb

; ð2Þ
where Fbt and Ftb are, respectively, the fraction of the particles that reached the top wall in the
calculation of particle dispersion from a bottom wall source and the fraction of the particles that
reached the bottom wall in the calculation of particle dispersion from a top wall source. When the
gravitational effect is large, RAt ¼ RDt ¼ 0 and a film flow does not exist on the top wall.

The trajectories of the particles are calculated with the following equations:
dxi
dt

¼ Vi ; ð3Þ

dVi
dt

¼ � 3qfCD

4dpqp

jV �UjðVi � UiÞ þ gi; ð4Þ
where Vi is the velocity of a particle, Ui is the gas velocity seen by the particle, qf is the density of
the gas, qp is the density of the particle, and gi is a component of the acceleration of gravity. In the
system shown in Fig. 1, g2 ¼ �g and g1 ¼ g3 ¼ 0, where g is the magnitude of the acceleration of
gravity. The drag coefficient, CD, is given by
CD ¼ 24

Rep
ð1þ 0:15Re0:687p Þ; ð5Þ
(Clift et al., 1978) where the particle Reynolds number Rep is defined with dp and the magnitude of
the relative velocity jU � V j. The gas velocity seen by the particle, Ui, is calculated from a DNS or
a modified Langevin equation. The simplified equation of motion for the particles, Eq. (4), in-
cludes the effect of nonlinearities on the fluid drag but does not include the effects of lift or a
correction for the fluid drag in the near-wall region. With the assumption that the concentrations
of particles are small enough, particle/particle interactions and the influence of the particles on the
fluid turbulence are ignored.
3. Description of the DNS

The DNS of fully-developed turbulent fluid flow in a channel was performed in a box with
dimensions of 1900m=v� in the streamwise direction ðx1Þ, 300m=v� in the wall-normal direction ðx2Þ,
and 950m=v� in the spanwise direction ðx3Þ, where m is the kinematic viscosity. A pseudospectral
fractional step method (Lyons et al., 1991) was used for the spatiotemporal discretization. The
computational grid was 128 · 65· 128. The resolutions in the streamwise and spanwise directions
were Dxþ1 ¼ 15 and Dxþ3 ¼ 7:4, where the superscript plus represents the variable was made di-
mensionless with the wall parameters, v� and m. The resolutions in the perpendicular direction
varied from Dxþ2 ¼ 0:18 at the wall to Dxþ2 ¼ 7:4 at the channel center. No slip boundary con-
ditions were used at x2 ¼ �H and periodicity was assumed in the x1 and x3 directions. The time
step was Dtþ ¼ 0:25. The gas velocity seen by the particles was calculated using a mixed spectral-
polynomial interpolation scheme developed by Kontomaris et al. (1992). At time zero, the par-
ticles were distributed uniformly on each wall.
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4. Stochastic simulation

4.1. A modified Langevin equation

A modified Langevin equation is formulated for a fluctuating component of fluid velocity, ui,
normalized by the Eulerian root-mean-square value of the velocity fluctuation, ri (Thomson,
1984). The change of the fluid velocity seen by a solid particle, dui, over a time interval dt is given
by
d
ui
ri

� �
¼ � ui

risi
dt þ dli þ dl0

i; ð6Þ
where si is the Lagrangian time scale and dli is a random forcing function which consists of a
mean drift dli and a fluctuation dl0

i. The fluid velocity, Ui, is defined as the sum of the Eulerian
average, Uiðx2Þ, and ui calculated from Eq. (6). The specification of si is discussed in the next
section. The mean drift dli is obtained by relating dðui=riÞ to the substantial Eulerian derivative
and taking an ensemble average of Eq. (6) (Iliopoulos and Hanratty, 1999):
dli ¼
o u2ui

ri

� �
ox2

dt; ð7Þ
where an overbar indicates an ensemble average. The use of Eq. (7) to counterbalance the mean
drift velocity associated with inhomogeneous turbulence is discussed by Legg and Raupach (1982)
and Thomson (1984). The Eulerian averages given by the DNS are used to obtain the ensemble
averages and ri. The covariances of dl0

i are obtained by using the definition of a stochastic dif-
ferential (Iliopoulos and Hanratty, 1999),
dl0
idl0

j ¼
o

uiuju2
rirj

� �
ox2

8<
: þ uiuj

rirj

1

si

�
þ 1

sj

�9=
;dt þ oðdtÞ2: ð8Þ
The random forcing function dl0
i is assumed to be jointly Gaussian (Mito and Hanratty, 2002).

Thus the triple correlations in Eq. (8) are taken to be zero because of the assumption of Gaussian
turbulence. The condition of well-mixedness (Thomson, 1987) for the system constructed with
Eqs. (6)–(8) was verified in the calculation of dispersions of fluid particles from uniformly dis-
tributed sources (Mito and Hanratty, 2002).
4.2. Selection of the time constants si

A critical issue in using a modified Langevin equation is the specification of the time constants,
si. For fluid particles they have been defined by the scaling law (Monin and Yaglom, 1975;
Tennekes, 1979)
si ¼
2r2

i

C0~ee
: ð9Þ
Here ~ee is a modified dissipation rate of turbulent energy defined as
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~ee ¼ m
oui
oxj

oui
oxj

8<
: � 2

o
ffiffiffi
k

p

oxj

 !2
9=
;; ð10Þ
where k is the turbulent energy and ~ee excludes large contributions close to a wall in a region where
the velocity profiles are linear and oscillating with time (Jones and Launder, 1972). Sawford
(1991) suggested C0 ¼ 7 and Du et al. (1995) suggested C0 ¼ 3� 0:5 from experiments in a ho-
mogeneous, isotropic field. Mito and Hanratty (2002) obtained C0 ¼ 3:5 from experiments done
in a DNS of fully-developed turbulent flow in a channel. Mito and Hanratty (2002) found that
this scaling law is a good approximation but that it does not capture the correct behavior in the
near-wall region ðxþ2 < 100Þ.

In the modeling of the fluid velocities seen by solid particles, Perkins (1992) and Pozorski and
Minier (1998) suggested that the time constants should be adjusted to account for the inability of
solid particles to follow exactly fluid particles. Iliopoulos et al. (2003) changed the functions
describing the time constants and found the simple approach of using the values characterizing
dispersion of fluid particles to be adequate. In separate calculations, we came to the same con-
clusion as Iliopoulos et al. (2003) (for the conditions considered in this paper).
5. Numerical method

5.1. Time advancement scheme for the particle tracking

At each time step, the displacements of the particles, defined by Eq. (3), are calculated by using
a second-order Adams–Bashforth method. When using the DNS, the fluid velocities seen by
particles are calculated by interpolating the velocities obtained from the DNS after the time step
that has just been completed. In the stochastic simulation, Eq. (6) is solved by using a fully im-
plicit method in order to specify the fluid velocity. The same time step that is used in the DNS,
Dtþ ¼ 0:25, is assumed for solving Eq. (6). The velocities of the solid particles are calculated with
Eq. (4) by using a second-order Adams–Bashforth method. At the initial time step, a first-order
Euler explicit method was used to calculate the displacements and the velocities of particles.
Particles are removed from the field when they are at a distance of dp=2 from a wall.
5.2. Calculation of fully-developed fields

Fully-developed stationary concentration fields are calculated by using a Lagrangian method,
which pictures the field as resulting from instantaneous wall sources that propelled solid particles
into the field at different previous times. For the flow model shown in Fig. 1, this calculation
becomes simple since the concentration and other statistics are varying only in the x2-direction.

The computational experiment involved the injection of Nb (¼ 10,000) particles from the
bottom wall at time zero. The number of particles whose centers are in bins of size Dx2, nbðx2; tÞ,
was calculated at different times ðt > 0Þ. The ratio nb=Nb, obtained in these calculations, represents
the probability of the particles being in the bin at x2 at time t, Pbðx2; tÞDx2, where Pbðx2; tÞ is the
probability density function. Now Nb (¼RAbADtÞ represents the strength of a wall source, where
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Dt is a time interval over which Nb drops are admitted from a wall source and A is the area of the
wall over which the drops are charged. Thus, for a given wall source
nbðx2; tÞ ¼ ðRAbADtÞPbðx2; tÞDx2: ð11Þ

Define the concentration determined at x2, t for the wall source as Cbwðx2; tÞ ¼ nbðx2; tÞ=ADx2. Thus
Cbwðx2; tÞ
RAb

¼ DtPbðx2; tÞ ð12Þ
is the contribution to the fully-developed concentration at x2 for particles that were admitted to
the field for times between t � Dt and t. At a given x2 the particle concentration for the fully-
developed field, Cbðx2Þ, represents contributions from sources that were admitted at all previous
times, �1 < t < 0, so that Cbðx2Þ is approximated as the integral of results for single wall sources,
Cbwðx2; tÞ, from t ¼ 0 to t ¼ 1 (Hanratty, 1956; Papavassiliou and Hanratty, 1997):
Cbðx2Þv�
RAb

¼ v�
Z 1

0

dtPbðx2; tÞ: ð13Þ
The dimensionless contribution from sources located at the top wall is
Ctðx2Þv�
RAt

¼ v�
Z 1

0

dtPtðx2; tÞ: ð14Þ
Thus, a dimensionless concentration in the fully-developed field, Cv�=RAbðx2Þ, is calculated
from
Cv�

RAb

¼ Cbv�

RAb

þ RAt

RAb

Ctv�

RAt

; ð15Þ
where C ¼ Cb þ Ct and Eq. (2) is used to specify the relative strengths of the top wall sources.
Other statistics in the fully-developed field, which may include velocity components, are calculated
with the average values taken for the contributions from sources on the bottom and top walls, fb
and ft, as
f ¼ Cbfb þ Ctft
C

: ð16Þ
6. Results

6.1. Parameters representing the calculations

The motion of a sphere described by Eqs. (4) and (5) is governed by the particle diameter, dp,
the density ratio, qp=qf , and the Froude number, Fr (¼ v�2=2gH ). The dimensionless inertial time
constant of the particles is defined as
sþp ¼
4dþ

p ðqp=qfÞ
3CDjVþ �Uþj ð17Þ
and the free-fall velocity was obtained from Eq. (4) as
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V þ
T ¼ sþp g

þ: ð18Þ
The conditions, dþ
p ¼ 0:368, Fr ¼ 0:6, qp=qf ¼ 2650, were chosen so as to have a dimensionless

inertial time constant of sþp ffi 20 and V þ
T ¼ 0:11. The dimensionless gravitational constant gþ

(¼ 1=2FrRes) was set at 5.6 · 10�3.
6.2. Single wall sources

Fig. 2 shows probability density functions, Pb, (concentration fields) of particles that originate
from a single source on the bottom wall. The ordinate is made dimensionless by using the viscous
length ðm=v�Þ. The abscissa is the dimensionless distance from the bottom wall. The concentration
fields were calculated by using first-order weights for each particle that are defined with the
distances between the center of the particle and the edges of the bins between which the particle
exists. This method increases accuracy of sampling compared with a zeroth-order method that
uses a single weight for each particle in a sampling bin. The centers of the 129 sampling bins are
distributed from x2 ¼ dp=2 to x2 ¼ 2H � dp=2 by using a cosine function, which gives bin sizes of
Dxþ2 ¼ 0:02 at x2 ¼ dp=2 and of Dxþ2 ¼ 3:7 at the center of the channel. The temporal variations
of the concentration fields through tþ ¼ 250 are presented. The area under a curve is the fraction
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Fig. 2. Distributions of particles from a wall source located on the bottom wall.
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of the particles which remain in the flow at the specified tþ. The solid and dotted curves, re-
spectively, present calculations in which fluid velocities seen by particles are obtained from a DNS
and from the stochastic analysis (the model). Good agreements are noted. At small times, tþ < 40,
peaks are observed to move away from the wall because of the inertia of particles injected with
V 0þ
2 ¼ 1 at xþ2 ¼ dþ

p =2, t
þ ¼ 0. The peak reaches xþ2 ¼ 13 at tþ ¼ 40. At tþ ¼ 70 it starts moving

toward the bottom wall because of gravitational effects. These results suggest that the particles
tend to lose memory of their initial motion at xþ2 ffi 0:65V 0þ

2 sþp , where V 0þ
2 sþp is the stopping dis-

tance in a motionless fluid. As time proceeds the particles are mixed by the fluid turbulence and
gravitational settling.

It is noted that at tþ P 50 the concentration is skewed in the direction of positive xþ2 . This
skewness is larger for the model. A consequence of this is that the particles reach the wall slightly
sooner when calculations are done with the DNS. At larger tþ the peak disappears and the
maximum exists close to the wall. However, again, the model predicts slightly smaller concen-
trations near the wall and slightly larger concentrations at larger xþ2 . Similar results were observed
in a study of dispersion of solid particles from a point source located at xþ2 ¼ 40, except that the
peak at small tþ was at the injection location (Iliopoulos et al., 2003). Calculations with a modified
Langevin equation, in which skewness of the fluid velocity fluctuations was considered, were
carried out. These showed no improvement. The differences, therefore, appears to reflect limita-
tions in the model.

Fig. 3 presents temporally varying concentration fields of particles from a single source on the
top wall. The definitions of the axes are the same as for those in the Fig. 2. Peaks are observed to
keep moving downward due to the influence of gravitational settling. Good agreement is noted
between the calculations with the model and the experiments in the DNS. However, the model
predicts slightly smaller dispersion (larger concentrations) near the peaks at tþ P 75.

The number of the particles, n, which entered the flow field from sources on the bottom and top
walls at time zero and remain at time tþ was calculated. Fig. 4 presents the time derivatives with a
minus sign, �dn=dtþ, that is, the rates of deposition. Particle deposition starts on the bottom wall
at tþ ¼ 35 in the DNS and at tþ ¼ 60 in the model simulation, consistent with the concentration
profiles shown in Fig. 2. The rate of deposition is larger for the DNS than for the model simu-
lation at small times tþ < 250 and it becomes almost the same after this time period. This rate is
strongly affected by the concentration of particles near the wall. The times at which the peaks are
observed in Fig. 4 correspond to the times at which the concentrations at the wall assume
maximum values. These times are the same for the model and for the DNS. All the particles
deposit by tþ ¼ 7900 for the DNS and by tþ ¼ 14,300 for the model simulation.

6.3. Fully-developed concentration fields

The ratio of the rate of atomization at the top wall to that at the bottom wall, RAt=RAb, was
calculated as 3.6 · 10�3 by using Eq. (2) for the DNS and as 3.9 · 10�3 for the model simulation.
Fig. 5 shows dimensionless concentration profiles in the fully-developed field that were calculated
from the data for wall sources on the bottom and top walls by using Eqs. (13) and (14). The model
simulation approximately captures the concentration field which was calculated by using the
DNS. However, it predicts larger concentrations throughout the domain. This reflects the cu-
mulative effect of underpredicting the rate of deposition for tþ 6 200, shown in Figs. 2 and 4.
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Lines with dots and dashes are solutions of a diffusion model described with the equation
�et
dC
dx2

� VTC ¼ a; ð19Þ
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where a is the flux (equal to V2C) and et is a turbulent diffusivity (Paras and Karaberas, 1991; Pan
and Hanratty, 2002). In a fully-developed field, a ¼ 0 and a solution of Eq. (19) becomes expo-
nential when a constant value is assumed for the turbulent diffusivity. (This approximation is
expected to be valid only in the central region of the channel.) The turbulent diffusivities calcu-
lated from the concentration profiles for the DNS and the model simulation are very close. Thus
eþt ¼ 12:5 ðet=v�H ¼ 0:083Þ is assumed for both of the lines shown in Fig. 5. It is observed that the
turbulent diffusivity model gives a good approximation for both calculations in the central regions
of the channel. Thus, turbulent dispersion for the fully-developed field is captured quite well in the
model simulation.

The peaks in the fully-developed concentration profiles reflect the initial mixing process. Fig. 6
presents filtered concentration profiles of the fully-developed fields for which only particles that
have existed in the field over certain times are taken into account. The profiles for tþ > 0 cor-
respond to the fully-developed concentration fields shown in Fig. 5. For both the DNS and the
model simulation, it is observed that the peaks in the near-wall region are caused by the particles
that entered the field at recent times, tþ 6 50–75. The distance of the peaks from the wall ap-
proximately corresponds to the stopping distance of the injected particles that is observed in Fig.
2. After an initial mixing process at 0 < tþ 6 50–75, deposition starts. A large fraction of the
particles close to the wall is observed to be contributed by sources that have been in the field for
times less than 200 wall units. It is noted that the filtered profiles show slightly larger Cv�=RAb for
the model.

Since RAb equals the rate of deposition RDb one can replace RAb=C with RDb=C in Fig. 5. The
particles that are observed at the wall ðxþ2 ¼ dþ

p =2Þ can be divided into two populations for
the free-fall velocity that is considered ðV þ

T ¼ 0:11Þ. One, with concentration CWþ ¼ RAb=V 0
2 , has

the velocity V 0
2 with which the particles are injected. The other, with concentration CW� ¼ �RDb=

V W, has an average negative velocity V W and contains all of the depositing particles. From al-
gebraic considerations which recognize that both populations contribute to the concentration at
the wall, CW ð¼ CWþ þ CW�Þ, one can show that
CWv�

RAb

¼ 1

V 0þ
2

� 1

V
þ
W

: ð20Þ
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The slightly larger value of CWv�=RAb obtained with the stochastic model (Figs. 5 and 6), there-
fore, suggests that the model is predicting slightly smaller values of �V W. For the case considered
in this paper ðV þ

T ¼ 0:11Þ all of the particles in the CW� population have negative velocities.
However, this is not the situation for V þ

T ¼ 0. Then, a large number of particles with very small
positive or negative velocities are trapped in a region very close to the wall.

For V þ
T ¼ 0:11, CW� and V W can be calculated by conditionally sampling particles with neg-

ative velocities in the bin next to the wall. Fig. 7 presents probability density functions of �VW
obtained in this way. They were calculated by using a first-order sampling method and 65 bins
distributed from V þ

W ¼ 0 through V þ
W ¼ �2 with a hyperbolic tangent function which gives bin

sizes of DV þ
W ¼ 1:7 10�5 at V þ

W ¼ 0 and DV þ
W ¼ 7:7 10�2 at V þ

W ¼ �2. The line with dots and
dashes represents the free-fall velocity, �V þ

T ¼ 0:11. Peaks are located approximately at �V þ
T .

Thus, it can be seen that the free-fall velocity has a large effect on the deposition process. The long
tails in the region of large �V þ

W show contributions from particles which start a free-flight at some
distance from the wall. Good agreement is noted between calculations done with the DNS and
with the stochastic model. However, the model slightly underestimates the fraction depositing
with �V þ

W > 0:2. The mean velocity, �V
þ
W, is calculated from the pdf profiles as )0.133 for the

DNS and )0.125 for the model simulation. This difference is largely caused by differences
12

10

8

6

4

2

0

fi
lte

re
d 

C
v*

 / 
R

A
b

100806040200

x2
+

(a) DNS
t+ > 0
t+ > 25
t+ > 50
t+ > 75
t+ > 100
t+ > 200

14

12

10

8

6

4

2

0

fi
lte

re
d 

C
v*

 / 
R

A
b

100806040200

x2
+

(b) Model
t+ > 0
t+ > 25
t+ > 50
t+ > 75
t+ > 100
t+ > 200
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observed in the velocities of the particles that contribute to the tails. The fractions of the particles
in these tails are very small but their contributions to the deposition fluxes are not small. For
example, the fractions representing the contributions of the tails for �V þ

W P 0:2 are 20% for the
DNS and 13% for the model.
6.4. Spatial variations of particle velocities

Fig. 8 presents streamwise mean velocities of the particles in the fully-developed field. The curve
with dots and dashes represents the mean velocity of the fluid. Good agreement between the DNS
and the model simulation is noted. The streamwise mean velocity of the particles becomes larger
than the fluid mean velocity in the near-wall region because of the assumption of a large x1
component of the injection velocity, V þ

1 ¼ 15, and the contribution of the free-flight particles
which reached this region without completely losing the large streamwise velocities at the origin of
the free-flight. By considering an imaginary source at xþ2 ffi 11, which corresponds to the locations
of the peaks in the concentration fields shown in Fig. 5, the increased mean velocities below this
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Fig. 8. Streamwise mean velocities of particles in the fully-developed field.
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point and decreased mean velocities above this point are understood. The wall-normal mean
velocities of the particles in the fully-developed field are zero at all locations for the DNS and the
model simulation. This result is consistent with the existence of a stationary field.

Fig. 9 presents root-mean-square values of the wall-normal fluctuating component of the
particle velocity in the fully-developed field. The curve with dots and dashes represents the
Eulerian wall-normal fluid turbulence. Because of particle inertia, the particle turbulence is
smaller than the fluid turbulence except in the near-wall region, where it is larger because of the
large velocity contributions by entrainment and by depositing particles in free-flight (Iliopoulos
et al., 2003). The model and the DNS are in good agreement. The model, however, slightly un-
derestimates the particle turbulence in the center region of the channel. The value of vþ2 rms at the
wall (equal to 0.42 for the DNS and 0.40 for the model) is associated mainly with the velocity of
the injected particles. The decrease with increasing x2 reflects a slowing of the injected particles
due to fluid resistance. The minimum corresponds to the location of the maxima in the concen-
tration (Fig. 6) where the injected particles appear to be completely mixed.

Fig. 10 presents probability density functions of the particle velocities at xþ2 ¼ 1, 5 and 13 in the
fully-developed field. The areas under the curves are unity. In the vicinity of the wall xþ2 < 7, two
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separate distributions are observed. One, in the positive region, represents particles injected into
the flow at xþ2 ¼ dþ

p =2 with a velocity V þ
2 ¼ 1. The other one shows velocities associated with the

deposition process. At xþ2 ¼ 13 the injected particles are mixed with the other particles and the
distribution has a single peak. The influence of the free-fall velocity is evident only for xþ2 6 5.
Good agreements between the DNS and the model simulation are noted.

6.5. Dimensionless rate constants

A dimensionless rate constant (McCoy and Hanratty, 1977) can be defined as
kþDB ¼ RAb þ RAt

2CBv�
; ð21Þ
where CB is the mean concentration of the fully-developed field defined as
CB ¼
Z 2

0

Cd
x2
H

� �
: ð22Þ
The bulk rate constant, kþDB, is 0.37 for the DNS and 0.29 for the model simulation. The model
simulation underestimates the rate constant because of the underestimation of �V W and the
overestimation of particle diffusivity for xþ2 < 50. Eq. (21) represents an average of the rates of the
deposition on the bottom and top walls. These rates can be separately defined by using concen-
trations at a specified distance from the walls. If the concentrations at xþ2 ¼ 40 from the walls are
chosen, the rate constants for the bottom and top walls are, respectively, defined as
kþDb40 ¼
RAb

Cb40v�
; ð23Þ

kþDt40 ¼
RAt

Ct40v�
; ð24Þ
where Cb40 and Ct40 represent the concentrations at a distance of xþ2 ¼ 40 from the bottom and top
walls. The rate constants for the bottom wall, where gravity is aiding deposition, are calculated
from Eq. (23) as 0.47 for the DNS and 0.34 for the model simulation. The rate constants for the
top wall, where gravity is hindering deposition, are calculated with Eq. (24) as 0.014 for the DNS
and as 0.0095 for the model simulation.

The dispersion process occurs approximately in two steps. At small times particles from the
wall sources mix with the fluid and no deposition occurs. The filtered curves, shown in Fig. 6, for
tþ > 50 are more representative of the concentration field associated with deposition than is the
profile in Fig. 5. It is of interest to note that the filtered concentration at xþ2 ¼ 40 is the same for
tþ > 0 and for tþ > 50. The definition of rate constants in terms of Cb40 therefore, appears to be a
sounder choice since it is less sensitive to the details of the original mixing process.
7. Interpretation of the concentration profiles

A physical interpretation of the concentration profile shown in Fig. 5 is a challenging task.
It might be useful to consider the mean transport velocity of the particles as the result of
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contributions from diffusion, Vd, gravity, Vg, turbophoresis, Vtp, free-flight to the wall, Vff , and the
mixing motion associated with the injection of the particles at the wall, Vi :
V ¼ Vd þ Vg þ Vtp þ Vff þ Vi ; ð25Þ
where V ¼ 0 for a fully-developed field. The turbophoretic flux results from a gradient in the
turbulence (Caporaloni et al., 1975; Reeks, 1983; Brooke et al., 1994).
Vtp ¼ �sp
dv22
dx2

: ð26Þ
If the particles have been in the field long enough they will, on average, reach a terminal velocity
so that Vg ¼ �VT.

Particles arrive at the wall by gravitational settling and by turbulence through a free-flight
mechanism. The particles lag behind the fluid velocity fluctuations. As they approach the wall they
‘‘disengage’’ from the fluid turbulence. If they have a large enough velocity they move into a
region of lower fluid turbulence and glide to the wall by free-flight or by gravitational settling.
This process has been described in detail by Brooke et al. (1994).

In the center regions of the channel the two important fluxes are Vg and Vd so the concentration
field is defined by Eq. (19). If et is constant one calculates that the concentration decreases ex-
ponentially with x2. Since the turbulent diffusivity decreases at small x2 a departure from the
exponential relation and increases in the magnitude of dC=dx2 are observed as x2 decreases.

The turbophoretic velocity is important for xþ2 < 60 or for xþ2 > 240. The gradients of turbu-
lence in these regions are such that they cause particle drift toward the two walls. At the bottom
wall this will enhance the influence of gravity. For VT ¼ 0 it is the dominant mechanism for
bringing particles into the wall region (Brooke et al., 1994).

For the cases in which there is no top wall one would expect the exponential relation to extend
out to very large x2. However, for the case of a channel flow, turbophoresis can greatly alter the
behavior. The influence is different from what is observed at the bottom wall in that it opposes the
influence of gravity. A balance equation can be written as
et
dC
dx2

¼ �VTC � sp
dv22
dx2

C: ð27Þ
The turbophoretic effect starts to have an influence at xþ2 ffi 230. There is a region where the
turbophoretic and the gravity effects approximately balance and, from Eq. (27), the concentration
gradient is small (see Fig. 5). As already shown in Fig. 7, particles are thrown to, or close to, the
bottom wall by a free-flight mechanism. Particles that stop short are carried to the wall by gravity.
At the top wall, gravity carries particles away from the boundary. Thus, there is a sharp decrease
in particle concentration at the wall as xþ2 ! 300. Only particles with very large turbulent ve-
locities reach the wall.

The calculation of concentration profiles with Eq. (25) is not clearcut because of uncertainties
in representing Vi and Vff and of inaccuracies in assuming Vg ¼ �VT. As shown in Fig. 6 the in-
fluence of the injection process on the concentration profiles is associated mainly with sources that
have been in the field for small times. The filtered concentration field for tþ > 75, partially shown
in Fig. 6, is presented in Fig. 11 for 06 xþ2 6 300 as a solid line. This should be more representative
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of the deposition process. The dashed line in Fig. 11 represents a calculation with CWv�=RAb ¼ 7:8
which used Eq. (25) with Vi ¼ 0 and adjusted the spatial variation of et so as to obtain a good fit.
The turbophoretic velocity, Vtp, was calculated from Eq. (26). The approximation was made that
the use of v22 obtained for the filtered field would take account of the contributions from Vff and
from errors in assuming Vg ¼ �VT. Fig. 12 presents values of ðv22Þ

1=2
for the filtered field for

tþ > 75. It does not change from the value for the unfiltered field at 50 < xþ2 < 250. The main
difference is that a minimum does not exist close to the bottom wall and the value at the wall is
largely associated with depositing particles. (It is 0.15 for the DNS and 0.14 for the model.) The
influence of filtering on v22 at the top wall is not understood. However, it should be pointed out
that the number of particles at the top wall is very small (see Fig. 11). Mean fluxes, calculated for
the filtered fields, are given in Fig. 13. It is noted that V , in Eq. (25), is not zero since the con-
tribution from the initial mixing process, Vi , is ignored.
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8. Discussion and conclusions

8.1. Principal contributions

The two principal contributions of this paper are the evaluation of a stochastic method (that
uses the Langevin equation to represent fluid turbulence) to describe the behavior of a wall source
of solid spheres and the use of these results to enhance our physical understanding of the dis-
persion and deposition processes.

8.2. Testing the stochastic analysis

Considering the complexity of the turbulence close to a wall and the simplicity of the model it is
satisfying (and surprising) that the agreement with experiments done in a DNS is so good.
Furthermore, the calculation required the use of only about 3% of the CPU time and memory that
were needed in the DNS experiments. These results have encouraged us to use the model at a
higher Reynolds number (for which the advantage would be much greater) and for a wide range
of conditions in order to obtain a physical understanding of the influence of gravitational settling
and of particle inertia on the rate of deposition under conditions analogous to what is found in
gas–liquid annular flow. The results of these studies are presented in Part 2 of this paper.

8.3. Behavior of a wall source (from DNS results)

A simple model for a wall source is used whereby solid spheres are ejected from the wall at a
constant velocity, V0. The behavior is similar to what has been observed for particles that are
admitted to the flow at a distance from the wall, x2, whose value depends on the magnitude of V 0

2 .
The dispersion of particles originating from a wall source occurs approximately in two stages.

For tþ < 75 the injected particles are entrained in the turbulent flow and a peak in the concen-
tration appears. For tþ > 75 the concentration field has a maximum value close to the wall and
deposition causes decreases in the number of particles in the field. At large enough times all the
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particles deposit. The particles first reach the wall at tþ ffi 35. Their concentration at the wall
increases and eventually reaches a maximum at tþ ffi 100. At time tþ ffi 120 only 20% of the
particles have deposited.
8.4. Wall transfer (from DNS results)

Concentration profiles associated with wall transfer can be represented as the sum of particles
that have originated from sources that entered the field at previous times of 0 < tþ < 7900. The
peak that is observed at xþ2 ¼ 11 is caused by peaks observed at small times in the calculations for
a wall source.

This is illustrated in Fig. 6 where filtered concentration profiles are presented. By considering
only point sources that have been operating for tþ > 75, no evidence of the injection process is
observed. The concentration decreases monotonically with xþ2 and the concentration profile is the
same for the filtered and unfiltered data for xþ2 > 40. The dimensionless concentration of particles
with a negative wall-normal velocity component at the wall, given as CW�v�=RAb, is 7.8 for the
filtered profile (for tþ > 75). The magnitude of the average velocity of these particles, �V W, is
calculated, as 0.13v� either from the measured particle velocity distribution at the wall (Fig. 7) or
from the value of RAb=CW�v� by using Eq. (20).

For the conditions considered ðV þ
T ¼ 0:11; sþp ¼ 20Þ gravity is having a strong effect on the

distribution of the particles (so that the ratio RAt=RAb is only 3.6 · 10�3) and on the rate constants
characterizing deposition at the two walls. This is also evident in the probability distribution of
the velocities of particles (Fig. 7). Most (92%) of the particles have a velocity close to the settling
velocity ð0 < �V þ

W 6 0:2Þ. However, these contribute 80% of the deposition flux. The rest of de-
position flux is associated with particles in the tail of the distribution. For example, the 3% of the
particles which have velocities ð�V þ

W Þ greater than 0.3 make a contribution of 10% to the depo-
sition flux.

Many of the depositing particles have velocities much greater than the settling velocity and the
turbulent fluid velocities close to the wall. As pointed out by Brooke et al. (1994), these large
velocity particles arrive by ‘‘free-flight’’ from regions that are distant from the wall. If the channel
is vertical many of these particles stop before they reach the wall and accumulate in the viscous
sublayer. This does not happen for the case considered since gravity carries the particles to the
wall and, therefore, enhances deposition.

The particle flux at any location is the product of the average velocity, V 2, and the concen-
tration, C. The velocity can have contributions from gravitational settling, turbulent diffusion
(due to concentration gradients), turbophoresis (due to gradients in turbulence), velocities asso-
ciated with the injection of particles at the wall, free-flight motions to the wall. The understanding
and definition of these different contributions will require studies over a large range of V þ

T and sþp .
For the conditions considered in this paper, the concentration field in the center of the channel
would have small contributions from injection velocities, free-flight and turbophoresis. Turbulent
diffusion is balanced by gravitational settling. Thus the integration of Eq. (19) for a constant et
and for a ¼ 0 gives
ln
C
CR

¼ � VT
et
ðx2 � x2RÞ; ð28Þ
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where CR is the concentration at a reference location. If et ¼ nv�H
ln
C
CR

¼ � VT
nv�

x2 � x2R
H

: ð29Þ
This result provides a rough fit for the data in the center of the channel and suggests that the
asymmetry of the profile increases with increasing VT=v� (Baik and Hanratty, 2003).

The fit to the data can be extended to smaller x2 by allowing et, in Eq. (19), to change with x2
and by considering turbophoresis effects, as shown in Fig. 11.

8.5. Errors in the stochastic analysis

The stochastic analysis captures all of the physics of the deposition and mixing processes.
However small, but significant, discrepancies need to be pointed out.

One is the average of the negative velocities of the particles in the bin closest to the wall. As has
already been mentioned, the intercept of Cv�=RAb in the filtered profile for tþ > 75 (in Fig. 6) gives
V W ¼ �0:133v� for the calculations with the DNS. The model gives a higher Cv�=RAb and
V W ¼ �0:125v�. A possible explanation is given in Fig. 7, which presents the probability density
function of the velocities of the particles in the bin closest to the wall. Slightly larger values in the
tail are observed for calculations done with the DNS. These small differences in the free-flight
contributions can cause differences in the average velocity of the particles very close to the wall.

The most noticeable discrepancy is in the calculation of the concentration profile, shown in Fig.
5, where the DNS is seen to predict lower concentrations. This is partly caused by the prediction
of lower �V W by the model. This can be taken into account partially by plotting C=CW. A dif-
ference is still noted. This suggests that the most important problem is that the model is predicting
larger et for the region between the peak ðxþ2 ¼ 11Þ and xþ2 ¼ 50.
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